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Spherical Model for 

It is shown that the solution of the mean spherical approximation for the 
ion-dipole mixtures obtained by Blum, Adelman, and Deutch has an explicit 
closed form solution which is one of the roots of a cubic equation. 
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The mean spherical approximation (MSA) was introduced by Lebowitz and 
Percus. (1) The solution of the MSA for the restricted primitive model of 
electrolytes (equal-size ions in a continuum dielectric) was first obtained by 
Waisman and Lebowitz, (2) and soon after, Wertheim (3) obtained a solution 
for a system of hard spheres with point dipoles. In both cases, the solution 
involves an algebraic equation for an integral of the pair correlation 
function which is proportional to the excess internal energy for the ionic (or 
dipolar) system. 

In the first case, the equation is a simple quadratic, while in the dipolar 
case, it is of a much higher degree. However, in both cases the solution of 
the inverse problem, i.e., finding the Debye length from a given excess 
internal energy in the ionic case, is a simple linear equation. This is true 
also for the point dipole case. What  we want to show here is that for the 
restricted (all equal size) ion-dipole mixture, the solution of this inverse 
problem is a cubic for the ion-dipole excess internal energy. The MSA for 
the restricted ion-dipole mixture was first obtained by Blum (4) and Adel- 
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man and Deutch, (5) who reduced the MSA integral equation to a set of 
rather complicated algebraic equations. Further work by Vericat and 
Blum (6) showed that these algebraic equations could be written in a much 
simpler form. Our present work is a continuation of Ref. 6, and we will use 
the notation and symbols of this paper. 

Our system consists of a mixture of equal-size hard ions of charge + e, 
(where e is the elementary charge), number density Oi, and diameter o i = 1, 
and hard spheres with point dipole i~, density Pd, and diameter o d = 1. 

We designate the direct pair correlation function e~(r), and the indirect 
pair correlation function h~j(r) by the symbol fij(r), Then the relevant 
correlation functions are 

ion-ion: 

f i ( , )  = 1[ f +ooO+(r) _ f+o0o_(,) ] (1) 

ion-dipole: 

= f + a ( r )  (r)](f /2) (2) f d ( r  ) �89 o,, _ f o ~  . 

dipole-dipole: 

fdd (r) = -- 3'/~f ' '~ 

+ ( ~ ) l / 2 f " a ( r ) [ 3 ( f  ./2,)(f ~ -- ( ~ l "  ~2)] (3) 

where/~ the unit vector in the direction of/ t .  
As was shown in previous work, (4'6) the complete solution of the MSA 

integral equation is given in terms of three parameters: 

b o = 2~rPifo~176 rhii(r) (4) 

b 1 = 2qr(OiOd/3)l/2fo~drhid(r ) (5) 

b E = 3~r(E)l/2Odfo~drhdd ( r ) / r  (6) 

which are a function of the ionic strength (Debye inverse length) parameter 
d o and the dipolar (Clausius-Mossotti) strength parameter dE: 

d 2 = 8qrfle20i (7) 

d22 = (4~r /3)filt2Od (8) 

where fl = (1 /k)T is the Boltzmann factor. 
We have (4'6) 

al 2 + a2 2 = do 2 (9) 

- alKdi + a2(1 -- Kda ) = dod 2 (10) 

K 2 + (1 - gad )2 = y 2  + d22 (11) 
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with 

where 

a, =(1/2D2F ) ( -bo /3  2 + ' 2 b,/324) 
22 = (b,/2D2F )( /3,2 + �89 + ~ b2) 

Kd, = (b~/26)(1  + aiA ) 

1 - Kaa = (l/A)(/33 + �89 ) 

(12) 

(13) 

(14) 

(15) 

/33.2 ~ = 1 + ( - ) " b 2 / ( 3 . 2  ") (16) 

A = /3~ + b2/4 (17) 

D F = �89 [/36(1 + b0) - ~2b21 (18) 

A ~- l b  0 "}- 2/324 (19) 

Yl = /36//3?2 (20) 

It is easy to see that, using (14) and (15), we can write Eqs. (10)-(11) as 

- albl /2  + a 2 / 3 3  = - -  doAA (21) 

b2/4 +/332 = y2A2 + A2A 2 (22) 

with 
A = d 2 - d o ( b l / 2 A ) [  1(1 -.I- bo) + 1/36] (23) 

But from (9), (21), and (22) we can see that 

al/33 + azbl/2 = doyl A (24) 

and from (12) and (13) 

- (60/33 + b2/6) = y,do2D 2 (25) 

which is our crucial relation. We can eliminate d o from here  by squaring 
and again using (9), (12), and (13). We get 

(bo/33+~b2)2=y~{[-/362bo+~b2/32412+b2[ /3,2+�89 2} (26) 

which is a cubic equation in b 2 (see Fig. 1): 

c6b  + c.b + c262 + Co = 0 (27)  

with 
2 4 2 Co = bo(/36Yl - /32) = b2 /32 (1 /~o_  1) (28) 

= b 4 /32\ 2 c2 (/322+b~/332/4)y2+ o[(~/332 - 6 ) Y l - / 3 3 / 3 ]  (29) 

c4 = ~6 [ y2(9 +/3~2 + 3bo/33) - 1] (30) 

C 6 = .,1)2/144 (31) 
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Fig. 1. Solut ion of Eq. (27). b I as a funct ion  of  b o and  b 2. 

The numerical solution consists, then, in--for a given value of b 0 and 
b2--finding b~ by solving (26). From b0, bl, and b 2 we compute the values 
of d o and d 2 using Eqs. (9) and (11). From this all the relevant thermody- 
namic and structure functions can be computed. We refer the reader to 
Ref. 6 for explicit expressions. 
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